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Abstract

I model the interaction between dynamic decision making and social learning about new tech-
nologies in driving industry takeoff and productivity growth. Learning about the use of new
technologies is an important factor in economic growth, but I demonstrate that anticipated so-
cial learning can lead to a free-riding dynamic in scenarios with high uncertainty. I consider the
empirical setting of hydraulic fracturing in North Dakota, where firms learn about the optimal
use of fracturing technology, in part due to detailed data published by regulators. The cumula-
tive value of this learning process is a ceteris paribus 40% increase in expected profitability. I
model the impact of learning externalities on agents’ decisions to drill shale oil wells, an optimal
stopping problem. My estimates suggest that the social learning externality is too small to affect
investment as the industry develops and uncertainty is reduced. Conversely, I demonstrate that
under higher uncertainty, anticipated social learning can lead to significantly lower industry
investment and learning rates. Under this scenario, I also demonstrate the potential for public
tests of the technology to enhance welfare by leading to more investment and a higher learning
rate.
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As a general rule, it seems likely that in the past 150 years the majority
of important inventions, from steel converters to chemotherapy, from food
canning to aspartame, have been used long before people understood why they
worked, and systematic research in these areas was thus limited to ordered
trial-and-error operations. – Mokyr (1992)

1 Introduction

Much technological change occurs not in the laboratory, but on the shop floor and in the field,

through a process of tinkering and exchange of experience with a new technology. Mokyr’s charac-

terization is particularly apt for one of the most significant recent technologies to be developed for

oil extraction: hydraulic fracturing. Improvements in the application of this technology have led

to stunning increases in productivity. In the North Dakota Bakken shale, the median well in 2008

began producing at a rate of 419 barrels of oil per day; in 2015 the figure increased more than 200%

to 1,265. Engineers’ continual experiments, rather than scientific breakthroughs, are responsible

for this growth, and experimentation and productivity improvement both continue today (Gold,

2014). This process of adoption, perfection, and dispersion of new technologies is understood to be

a key component of economic growth (see, e.g. Lucas (1993)), but questions remain: how does the

possibility of social learning affect investment decisions, and in turn, how does investment affect

learning?

I study the process of technological change in N.D. Bakken hydraulic fracturing by building and

estimating a dynamic structural model. The model features current knowledge as a dynamic state

and generates endogenous investment decisions and learning behavior. The model also accounts

for a firm’s incentive to wait and potentially benefit from its rivals’ experimentation under social

learning. I propose a rational expectations equilibrium, and use approximate dynamic programming

techniques to estimate the equilibrium in an empirical application. Model estimates suggest that

anticipated social learning does not act as a drag on investment as the industry’s knowledge matures;

however, in states with higher uncertainty, a free-riding dynamic can arise that leads to lower

investment and slower learning.
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My empirical application focuses on the shale oil industry in North Dakota’s Bakken formation.

The industry has witnessed rapid productivity growth in recent years as firms have improved their

use of inputs. The process has had dramatic effects on global energy markets: U.S. domestic oil

production has returned to peak levels not seen since the 1980s, prompting falls in crude oil prices

and political unrest in oil-rich nations. It is also an industry that features social learning: com-

peting firms sometimes cooperate on shared wells or use the same sub-contractors, and regulators

often collect and publish detailed production information. I estimate the model using data on oil

production and hydraulic fracturing inputs available through the North Dakota Industrial Com-

mission (hereafter, NDIC). The Bakken is well-suited to this study: over 10,000 wells have been

drilled over the last decade; large swings in oil prices provide identifying variation; the NDIC’s data

is available to industry participants, allowing for social learning; and detailed cost estimates are

available for a subset of wells, allowing me to construct a reasonable model of expected profits.

My results first confirm that learning is occurring, as firms change inputs to improve profits.

This process leads to an increase in expected profits of 40% over 10 years. I then construct and

estimate a dynamic model that includes industry knowledge as a state. Estimates from the model

suggest that anticipated social learning has a negligible impact on investment decisions. That is,

in the estimated information states, the option value of anticipated learning from rivals is small,

despite the overaching impact of industry learning on profits. Counterfactual simulations then

study the free-riding effect that anticipated learning has in less-certain information states – such as

those that might corresond to firms possessing limited attention or the beginning stages of learning

about a new shale formation, or about a new technology in another industry. In these states, lower

investment can lead to slower learning in a negative feedback loop. Finally, I consider the possible

role for public test wells in jump-starting the industry’s learning; these results demonstrate that

public tests of a new technology can be welfare enhancing by increasing learning and investment.

The remainder of this paper proceeds as follows. Below I summarize this paper’s contribution to

the literature, and then turn in Section 2 to an overview of the industry and relevant institutional

details. Section 3 describes and summarizes my data sources, then provides empirical evidence of
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learning. I outline the model in Section 4, and Section 5 details empirical choices and estimation.

I conduct counterfactual analyses in Section 6, and conclude in Section 7.

Related Literature

This paper contributes to the literature that models learning in strategic and social environ-

ments, as well as that which studies the economics of the oil and gas industry.

The importance of learning to economic growth has long been recognized. As an example,

Mokyr (1992) describes the gains of new knowledge or technologies as a true “free lunch”, and

Lucas (1993) calls growth, attributable in large part to learning, “a miracle”. One strand of the

economics literature, exemplified in Benkard (2000), has focused on “learning by doing” or the

ability to reduce costs and inputs over repeated instances of production: through trial and error,

the marginal cost of the 1000th widget is some fraction of that for the first widget. In contrast,

studies such as Griliches (1957), Foster and Rosenzweig (1995) and Conley and Udry (2010) have

considered the adoption of new technology and social learning in agricultural settings. This paper

is closer to the latter strand, modeling social learning about a new technology, though my empirical

setting is oil drilling and hydraulic fracturing.

Oil firms, which I also refer to as operators, face a complex dynamic problem: drilling a well

in the current period will yield uncertain resources in future periods, which can then be sold

for uncertain prices.1 This combination of irretrievable up-front investment and uncertain future

payoffs gives rise to real option value. Kellogg (2014) demonstrated the behavior of Texas oil

drillers in the 1990s in response to changes in oil price volatility was consistent with a real options

framework. His setting featured a constant (distribution of) underlying productivity, so firms’

option value was due to possible changes in the price of oil or cost of drilling.

In the more modern setting of the hydraulic fracturing boom, operators have enjoyed rapid

productivity growth as they have learned about the optimal use of the new technology. Covert

(2015) documents this process in the North Dakota Bakken shale formation, providing evidence of

1Drilling and fracturing technically refer to different stages of the production process. As I focus only on fractured
Bakken wells (which were all drilled prior to fracturing), I use the terms interchangably in this paper.

4



increasing productivity over time. He also finds that operators place greater weight on information

from their own wells compared to that published by a regulator on others’ wells. In related work,

Fetter, Steck, Timmins and Wrenn (2017) study learning about hydraulic fracturing fluids, using

a regulatory change in chemical disclosure laws; their results suggest that firms exploit disclosure

to learn from competitors, and that the knowledge is economically valuable.2

Both Covert and Fetter et al. focus on social learning’s effect on the firm’s decision of how

to fracture a well, taking the decision to drill a well as given. That is, they do not model the

extensive margin of whether to drill and fracture a new well. A rich literature in empirical industrial

organization, e.g. Ryan (2012) and Collard-Wexler (2013), has demonstrated the importance of

accounting for these investment and entry choices on industry and welfare outcomes. This paper

bridges that gap by jointly modeling social learning and drilling decisions.

This study is also related to two other recent works on strategic models of learning. Doraszelski,

Lewis and Pakes (2016) model agents learning about competitors’ play and equilibrium strategies

in a repeated game. Jeon (2017) studies implications on shipping investment of having agents

learn about demand shock parameters. Her model is similar in spirit to a strand of macroeconomic

literature that models either agents or policymakers as having Bayesian beliefs about exogenous

macroeconomic fundamentals, such as Cogley and Sargent (2005) or Orlik and Veldkamp (2014).

In contrast, the arrival of new information in my model is endogenous to current knowledge, as

investment decisions depend on the current information state.

2 Industry Overview

In order to inform modeling choices and data requirements, this section provides some institutional

background on oil production, hydraulic fracturing, and the Bakken shale formation.

Producing oil or gas from drilling a well is different than producing widgets in a factory. Firms

pay large sunk costs to drill each well (on the order of $10m to drill and fracture), and negligible

2Other forms of learning have been studied in this industry, such as geographic learning in Hendricks and Porter
(1996) and Levitt (2009), and inter-firm relationships in Kellogg (2011). This paper follows Covert (2015) in focusing
on learning about the production function.
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marginal costs of maintenance and pumping. With low marginal costs, economic production can last

for many years, but decreases exponentially over time from the initial production rate (hereafter,

IP). Further, even with the best seismic imaging technologies, there is variation in the realized

productivity of wells - the largest and most experienced companies drill “dry holes” along with

“gushers”. As discussed in Anderson et al. (2014), firms also face physical constraints that limit

the ability to control production from an active well. The implication is that an operator’s key

decision in determining future production is when to drill new wells.

Hydraulic fracturing refers to to the process of injecting water and chemicals (fracturing fluid)

and proppant, at high pressures, into shale or other low-porosity rock formations, in order to access

trapped hydrocarbon molecules. The technology has been around in some form since the 1940s,

but enjoyed rapid growth and development beginning in Texas the late 1990s. It has since spread

widely, revitalizing the U.S. oil and gas industry, and upending global energy markets. Its use

has a few key features that differentiate it from conventional oil and gas drilling. First, there is

significantly less geological uncertainty - for example in the Bakken virtually every well finds and

produces some oil. Second, as fracturing is used in rock formations with very low porosity, there

is no common pool problem. Third, how the well is fractured plays a large role in determining

productivity.3 The fracture is key to unlocking the valuable hydrocarbons, but done incorrectly

can also damage the resevoir. Therefore a second key decision in oil production from a hydraulicly

fractured well is how to fracture the well. As the technology in its modern form is relatively new,

firms are still experimenting and learning about its optimal use.

In fact, the development of hydraulic fracturing as it is known today is a result of just such

experimentation. Employees at Mitchell Energy in the 1990s were experimenting with gas wells in

Texas’ Barnett Shale. They were trying to reduce costs by fracturing wells with a watered down

fracture solution, when they discovered that fracturing with mostly inexpensive water (slickwater)

3When drilling and fracturing a well, an operator chooses the configuration of key input variables including: the
lateral wellbore length, the number of fracture stages, the amount and type of proppant, the amount and composition
of the fracturing fluid, and the injection pressure and rate. All of these choices combine to determine the quality of
the fracture. The fracture then interacts with local geology to determine oil production.
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worked better than the expensive gels (Zuckerman, 2013) that were conventional at the time.

Gold (2014) describes how even before Mitchell’s experiments, similar learning in Texas sandstones

occurred by accident at another firm; engineers injected more water than intended due to a broken

gauge, and the wells turned out to produce surprisingly well. The engineers published a paper and

served as inspiration for Mitchell’s later efforts. Gold also describes the attitude of some of those

early innovators:4

“Why it works is still generally unknown,” Walker wrote. Not that this mattered to
Walker. Engineers are problem solvers. If the wells were cheaper and gas production
better, problem solved. A later generation of geologists and engineers could worry about
why. They were making better wells and improving their company’s bottom line.

This experimentation has continued through the present, as operators have tried wells with

longer horizontal wellbores, denser fracture stages, varying amounts and types of proppant, and

varying amounts and compositions of fluid. As some changes have proven profitable, the average

well has used higher amounts of fluid and proppant per foot of wellbore, and more fracture stages

(EIA, 2016). The production function is high-dimensional and complex enough that the learning

process is ongoing at the time of this writing.

This paper’s empirical application focuses on drilling in North Dakota’s Bakken shale. The

Bakken has seen more than 10,000 wells drilled over the last decade, produces predominantly oil,

and has been a bit contributor to a rapid rise in U.S. crude oil production. Hydrocarbon production

in the Bakken is regulated by the North Dakota Industrial Commission, hereafter NDIC. The NDIC

collects and publishes well-level data on inputs and outputs, enabling firms to observe results from

competitors’ wells when deciding how to fracture their own.

3 Data and Summary

In this section I describe the data used in this study and discuss trends in key variables. To estimate

my model, I require: oil prices and futures to determine revenue expectations; well-level production,

4The attitude described is reminiscent of many examples given in Mokyr (1992) where scientific understanding
follows technological innovation, rather than vice-versa as is commonly presumed.
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characteristics, and fracturing inputs to estimate a decline curve and production function; and

drilling and fracturing costs to estimate a function relating inputs to costs.

3.1 Well Characteristics and Production

I collect administrative data on completions, production and other well characteristics from the

NDIC. One dataset of static well-level characteristics includes IP rates, drilling and completion

dates, well locations, target formations, and for horizontal wells, the length of the horizontal well-

bore. As different geological formations may have different learning processes, I use the formation

variable to restrict my sample for this paper to wells targeting the Bakken play.5 A separate NDIC

dataset contains well-level monthly production details: quantities of oil, water and gas produced,

days in production, quantities of oil and gas sold, and quantity of gas flared. Bakken wells derive

almost all of their value from crude oil rather than natural gas (which is often flared instead of

harvested), so I focus on attention below and in the model to oil production and sales.

Table 1 shows the evolution of some of these variables from 2005 to 2015. The first two rows

show that the number of active operators and completed wells rose steeply before falling off in 2015.

The third through sixth rows show that the distribution of IP has also dramatically increased: a

25th percentile well in 2015 has an IP almost twice as high as a median well in 2008. This is

partly explained by the increase in average length of a well, shown in the seventh row. The middle

section of Table 1 shows annual aggregate production from all Bakken wells, and from Bakken wells

completed that year. While aggregate production from Bakken wells has continued to increase, the

production from new wells has fallen along with completions.

The NDIC also publishes results from geological surveys, guiding estimates of the production

potential of the Bakken shale in various locations. Higher measures of total organic content (TOC)

and thicker shale layers indicate the possibility of more oil. The hydrogen index (HI) and S2-TMAX

(S2) are both measures of thermal maturity. A higher hydrogen index indicates the presence of

more hydrocarbons, and values as low as 200 can be considered mature. Ideal maturity is also

5Conversations with industry participants indicate that learning processes across formations are separate, as
geological differences between formations cause them to respond differently to treatments.
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indicated by S2-TMAX values between 435 and 460 degress celsius (McCarthy et al., 2011). The

bottom section of Table 1 shows that wells are progressively drilled where the Bakken formation is

thicker, with a higher TOC, a slightly lower HI, and roughly the same S2. The geological survey

data is thus ambiguous as to whether operators are drilling “sweeter spots” over time.

3.2 Oil Prices

Together with monthly production data, I use monthly oil prices to calculate operator revenue. I

gather prices from the U.S. industry’s benchmark futures curve, known as West Texas Intermediate

(WTI) via Bloomberg. I collect prices along the futures curve up to 60 months out to capture the

industry’s expectations of medium-term price movements.6 Figure 1 plots the price of crude and

some illustrative curves from 2003 through 2016. The figure displays a few features of interest.

First, the oil market has experienced two drastic price collapses in recent years, the first of which

was coincident with the financial crisis. Second, market expectations of future prices can run the

gamut from falling to stable to rising, but tend to reflect the recent past.

3.3 Hydraulic Fracturing Inputs

To estimate learning over the production function, it is necessary to see operators’ input choices.

The NDIC provides data on fracturing inputs, but housed in pdf documents of scanned images

that are not machine-readable. Therefore, I access a digitized version of this data provided by

DrillingInfo’s Engineering Feed. Because these data are sometimes missing or incorrectly tran-

scribed, I supplement DrillingInfo’s version with manual entries from the NDIC’s pdf files, and

from FracFocus, where available.7

Table 2 provides details on how those input variables have changed over time. From the first

6Conversations with industry members suggest this is reasonable: firms use futures to inform expectations, and
oftentimes to hedge price risk.

7In some instances, wells are re-fractured after a period of production, or if there was an issue in the original
stimulation. I am able to observe re-fractures by matching well API numbers, and do not include them in my
analysis.
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Figure 1: Monthly Oil Prices and Futures

Notes: Prices shown are for West Texas Intermediate (WTI) crude oil, and are taken from Bloomberg. The
futures curves are drawn using copntemporaneous futures contracts, up to 60 months out.

three columns, we see that fractures have used significantly larger quantities of fracturing fluid per

foot over the last decade, and that the variation in these inputs has likewise increased. The second

three columns show similar patterns in the use of proppant per foot.
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Table 2: Fracturing Inputs by Year

Fluid (gallons / ft) Proppant (lbs / ft)
Median Mean Std. Dev. Median Mean Std. Dev.

2005 52 62 35 102 158 134
2006 66 88 63 99 140 115
2007 74 97 165 96 156 252
2008 95 126 220 129 193 168
2009 103 143 131 176 213 160
2010 199 218 217 280 304 191
2011 224 232 121 296 301 111
2012 228 260 184 292 307 190
2013 244 296 212 317 354 244
2014 327 416 301 385 469 346
2015 339 449 353 382 453 251

Data is taken from DrillingInfo’s Engineering Feed. Missing and inaccurate data was corrected by hand using the
NDIC’s Completion Reports, housed in the NDIC’s Wellfile pdfs.

3.4 Well Costs

Operators are motivated by profit rather than production per se, so it is essential that my model

include costs. I am able to obtain detailed ex ante cost estimates known as Authorization for

Expenditures (AFEs) for some wells. These estimates are generated by operator engineers, and

represent the operators’ expected expenses for drilling and completing a given well. I am able

to gather AFEs only in particular circumstances, which occur for roughly 400 of the wells in my

sample, and some of these wells cannot be matched to the drilling, production and input datasets

by lease and wellname. Appendix C provides more details.

Figure 2 shows the evolution of average well costs from the AFE dataset from 2008 to 2015, with

costs broken down into four components: tangible drilling, intangible drilling, tangible completion,

and intangible completion. The figure shows that costs have generally been increasing, before

decreasing in 2015. Looking more closely at the subcomponents, the chart shows that most of the

change has come from completion costs. Completion costs have become a larger fraction of total

well costs, rising from roughly 40% to 60% between 2008 and 2014.
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Figure 2: Estimated Well Costs

Notes: Average well costs per year are shown, for wells in the AFE subsample (see text for details).

3.5 Evidence of Learning

Section 2 argued that learning is an important feature of the oil shale industry. In this section, I

provide evidence for, and an overview of, recent learning in the industry. I then proceed to rule

out several alternative explanations for the patterns in the data.

I provide three pieces of empirical evidence that learning is indeed occurring: first, I show the

evolution of well configurations and input choices; I then discuss how this learning is consistent

with profit maximization; third, I use regressions to suggest that operators learn from individual

wells.

As the first evidence for operator learning, I discuss how the industry’s well configurations and

input choices have changed. Two key inputs in a hydraulic fracture are the amounts of proppant

and fluid. Figure 3 plots yearly proppant and fluid use over the nine years ending in 2015. Both

input variables are normalized into per-foot terms, by dividing by the length of the horizontal

wellbore. Three facts are visible from this figure: first, there is wide variation in the use of these

inputs; second, the number of wells increased over the measured timespan, with a falloff in 2015 (as

oil prices fell); third, there is a clear upward and rightward trend, indicating that operators were

pursuing “bigger” fractures with more proppant and fluid. For example, a modal fracture in 2014

would have been one of the biggest fractures in 2008.

As operators began implementing larger fracture jobs, these new wells became important dat-

apoints for operators trying to understand the fracturing production function. This can be seen
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from Figure 3, where the observed frontier of fracture intensity shifts up and to the right over time.

Operators in later years had data on larger fracture jobs that they had lacked in earlier years.

Figure 3: Proppant and Fluid Use, by Year

Notes: Each figure represents a heatmap, with a darker shade indicating more wells. Both input variables
are transformed by dividing by the length of the horizontal wellbore. Values are truncated at 1500.

This industry-wide pattern is similar to that found at the individual operator level. As an

example, consider Figure 4, which charts the use of inputs by EOG Resources (one of the most

prolific operators in the Bakken). The figure illustrates that EOG fractured its wells more or

less predictably until 2012, when they began to incorporate some larger fractures. Over the next
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two years they tried different configurations, but the trend was to use more proppant and more

fluid. EOG’s smallest fracture in 2015 is larger than anything from 2012 or before. This pattern

suggests that EOG was learning about (and plausibly experimenting with) the optimal fracturing

configuration.

Figure 4: EOG Resources Proppant and Fluid Use, by Year

Notes: Each figure represents a heatmap, with a darker shade indicating more wells. Both input variables
are transformed by dividing by the length of the horizontal wellbore. Values are truncated at 1500.

Next, I show that the changes discussed above are consistent with learning and profit-maximization.

Rows 3-6 of Table 1 show that IP per well increased significantly from 2005 to 2015. Figure 5 exam-
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ines this evolution more closely, using a regression and counterfactual predicted values. The figure

shows predicted median initial production by year for three scenarios. The first uses actual inputs

and estimated location fixed effects, while the other two use median inputs for 2007 and 2015 along

with estimated location fixed effects. Thus, the counterfactuals are created by predicting IP if each

well had been drilled with 2007 and 2015 median configurations, but in the same place and at the

same time as it was drilled in reality. Details on the process of computing the counterfactual can

be found in Appendix B. The chart shows a sizable gap between predicted production from the

2007 and 2015 configurations, which implies that operators accumulated valuable knowledge over

those years. It also shows that most of the increase in production has been due to changes in well

configurations, rather than changes in geology, i.e. firms are drilling wells in a more productive

manner, not simply drilling in more productive locations.

Figure 5: IP, Actual and Counterfactual

Notes: The solid line plots annual median IP in barrels of oil per day; the dashed and dotted lines show
median counterfactual IPs if the wells were instead drilled with the median 2007 and 2015 configurations.
See text and Appendix B for details.

This discussion shows that operators have improved their output, but does not consider costs

and profitability. As a simple measure of profitability I consider the ratio of cost to IP.8,9 Figure 6

8Operators cannot control the commodity price of oil (and therefore revenues), but do have some control over
their costs and levels of initial production.

9An alternative measure of profitability is the break-even price of oil; this approach requires many modeling
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shows the evolution of predicted cost/IP with two counterfactuals. The solid line shows the median

of actual predicted cost/IP by year, while the two dotted lines plot median predicted cost/predicted

IP if the median 2007 and 2015 configurations had been used. Calculation details can be found in

Appendix B. The figure shows that the 2015 predicted cost/IP ratio is better than that of 2007, and

that the industry has generally been improving its estimated cost/IP ratio over that timeframe.10

This demonstrates that operators have made improvements on the profit margins they can control,

and suggests that the industry’s configuration changes are aimed at increasing profits, not simply

production.

Figure 6: Cost/IP, Actual and Counterfactual

Notes: The solid line plots annual median IP / predicted costs in barrels of oil per day per $ thousand; the
dashed and dotted lines show median counterfactual IPs / predicted costs if the wells were instead drilled
with the median 2007 and 2015 configurations. See text and Appendix B for details.

As a final piece of evidence of operator learning, I estimate a simple regression designed to

test whether individual wells have a measurable effect on the industry’s learning. The procedure

is as follows. For each well i in my dataset, I calculate the median inputs and outputs of all wells

completed in the 12 months before well i’s completion, and separately, of all wells in the 12 months

assumptions and so I do not pursue it here. However, the decrease found in my measure is similar to the decrease in
break-even prices found in industry analyses such as that at: http://digital.ogfj.com/ogfj/201706?pg=17pg17.

10Figures 5 and 6 are consistent with the results shown in Figure 9 of Covert (2015), where he performs a more
flexible calculation in a similar spirit.
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after well i’s completion. I next create an indicator denoting whether well i is an “outlier” well. I

define an outlier for cutoff k as a well with both input and output levels greater than k standard

deviations above the pre-distribution medians. I next calculate the difference in post- and pre-

median inputs, and then regress this difference on the outlier indicator.

The results of this exercise, using fluid per foot, are shown the second and third columns of

Table 3, with standard errors clustered at the operator level.11 The table indicates that larger

outliers predict greater increases in input usage. The coefficients are estimated to be statistically

significant from zero. While these regressions should not be interpreted as causal, the pattern is

suggestive: wells that enjoy bigger completions and produce more output than those in the recent

past tend to be followed by more wells with bigger completions.

I next perform two robustness checks of this result. First, I repeat the outlier-well exercise above

but now define outliers only using well inputs. The results of these regressions are in the third and

fourth columns of Table 3. The coefficient point-estimates follow a similar pattern as those in

column 2, but none of them are statistically distinguishable from zero at the 95% confidence level.

Considered with the original results, this suggests that the industry is more likely to imitate those

larger fractures that produce larger output than those that do not.

Second, I conduct a set of placebo regressions. I bootstrap 1,000 iterations, where in each

iteration, the independent variable is a randomly assigned indicator generated so as to have the

same number of ones as there are actual outliers in each case. The results are shown in the last

two columns of Table 3. The coefficients for the placebo test do not show a pattern, and are not

statistically distinguishable from zero. This result argues against the possibility that the coefficients

in the second column are only picking up a time trend.

3.5.1 Alternative Explanations

In this section, I argue against alternative explanations for the patterns in the data, and conclude

that learning about the production function is the most plausible explanation.

11Results using pounds of proppant per foot are similar and omitted for brevity.
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Table 3: Fluid per Foot Outlier Regressions

Outlier Input-only Placebo
k Coefficient p Coefficient p Coefficient p

1.0 3.961 0.038 4.268 0.110 0.042 0.977
1.5 8.714 0.004 5.946 0.128 −0.009 0.997
2.0 18.875 0.000 8.309 0.089 −0.199 0.965

Notes: each coefficient represents a separate regression, where the dependent variable is the change in 12 month pre-
and post- fluid per foot medians, and the independent variable is an indicator for outlier wells. The “Input-only”
specifications only consider the inputs when generating the outlier variable. The “Placebo” specification represents
a boostrapped regression, where in each iteration the indicators are randomly assigned, with the same number of
positives as in the actual “Outlier” case.

Consider the illustrative model, where a well’s expected profit can be written as a function of

oil prices p, quantity q, costs c, as well as their determinants: well inputs x and operator knowledge

Γ:

π(p, x; Γ) = pq(x∗(p,Γ))− c(x∗(p,Γ)) . (1)

I write x∗(p,Γ) to denote that the operator is choosing optimal inputs given p, Γ, and the functions

q(x) and c(x). Table 2 charts a monotonic increase in observed x∗(p,Γ), even as prices p behaved

very non-monotonically. This phenomenon has a few potential explanations.

The first alternative explanation is that unit costs c′t(x) have fallen, where t indexes time.

The direct costs for proppant and/or hydraulic fracturing fluid and/or the costs of recovering and

disposing well flow back might have fallen.12 Standard economic theory predicts that this would

lead to operators increasing their uses of these inputs until marginal benefits are again equated to

marginal costs. However, the evidence does not support this alternative. The EIA released a study

in 2016 on industry costs.13 They first find that proppant, fluid, and flowback costs make up only

26% of well costs on average.14 The study then found that proppant and fluid costs were relatively

stable from 2006 to 2015: fluids were slightly more expensive from 2010 to 2013, and proppant

costs were actually increasing over the period. The EIA study also traces flowback costs: while

12After the well is stimulated, some of the fracturing fluid flows back up the well; it must be carefully collected
and recycled or disposed of due to the hazardous chemicals it contains.

13See Figure 2-5 on page 12 of the IHS report (EIA, 2016).
14This is in line with what I can calculate from my AFE dataset.
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it does show a fall in flowback costs from 2012 to 2014, it shows an increase from 2006 to 2012

(EIA, 2016). These small and ambiguous changes in marginal costs cannot explain the monotonic

increase of proppant and fluid use in the Bakken.

The second possible explanation is that technology improved over the timeframe, so that q(x)

should be written qt(x). Such a shift in technology could expand operators’ choice set over input

configurations and change x∗. Again, the evidence rules out this possibility. The same EIA report

shows in Figure 2-16 on page 19 that the average Bakken well has lagged behind average wells in

other formations in proppant use per foot (EIA, 2016). The technology for more intense fractures

clearly existed for some time before operators decided to take advantage of it in the Bakken.15 So

changes in technology q are not a satisfactory explanation for the observed increase in x.

A third possibility is that operators’ configurations have changed because they are drilling in

different places, or that the production technology is a highly location-specific qloc(x). Figure 7,

which shows locations of wells drilled in 2006, 2009, 2012, and 2015 suggests that this is not the

case. While the early years saw operators explore new areas, by later years wells tended to be

drilled in areas that had been explored previously.

I further test this last alternative through a series of regressions, regressing well inputs on fixed

effects for operators, dates, and locations. Table 4 show the results of this exercise when dates and

locations are binned into 25 binary variables. Focusing on the first row, the adjusted R2 values

illustrate that of the three sets of fixed effects, operators are the most important in determining

how much fluid is used, followed by date; columns 4-6 show that the location fixed effects have little

explanatory power when operators are taken into account. The second and third row show that

similar patterns exist for pounds of proppant per foot and the number of frac stages.16 I conclude

that who fractures a well and when the well is fractured do much more to determine the well’s

inputs than where the well is fractured.

15This was confirmed by my conversations with an industry participant; he noted in early 2017 that his firm had
been experimenting with their currently-used frac configurations as early as 2011.

16Appendix D shows the results using 100 bins per variable; the results are similar.
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Figure 7: Drilling Locations Over Time

Notes: Each figure represents a heatmap of new drilling activity.

Table 4: Inputs by Operator, Date and Location; 25 bins

Adjusted R2

Fluid per Foot 0.31 0.21 0.09 0.49 0.34 0.28 0.51
Proppant per Foot 0.30 0.17 0.10 0.48 0.33 0.29 0.50
Stages 0.22 0.29 0.06 0.44 0.24 0.33 0.45

Operator FE X X X X
Date FE X X X X
Location FE X X X X

Notes: Each entry represents a separate regression. Dependent variables are listed in the first column. Included
independent variables are denoted by checkmarks, see text for description; location and date fixed effects are included
as 25 bins.
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Having argued against changes in q(x), c(x), or p explaining the observed trend in x∗(p,Γ),

I conclude that the most plausible explanation is a change in industry knowledge Γ, or learning.

This finding suggests the model of operator learning over optimal input use that follows.

4 Model

This section provides an overview of the industry model of social learning. First, I discuss the profit

function from drilling a well, and the role of information in determining input choices and profits. I

then outline a Bayesian learning process for incorporating new information, and the firm’s dynamic

problem. Finally, I turn to the industry-wide dynamics that arise from the firm-level model and

specify the equilibrium concept that will be used.

I begin with a brief overview: each well i is a firm that faces a two-part decision.17 The

first decision is an optimal stopping problem of when to drill the well: making the investment of

drilling a well enables oil to be produced and sold; however, there is also option value in waiting,

as oil prices might rise or new knowledge might arrive. The second decision is how to drill and

stimulate the well given the choice to drill.18 These two decisions, along with shocks, determine

IP; subsequent production follows a deterministic decline curve. Both decisions are made with the

goal of maximizing expected discounted profits: profits are determined from production via the

prevailing oil price and drilling costs, both taken as given.

The key feature of the model is that firms are uncertain about the optimal method of drilling

wells. Information on drilled wells is published by the regulator, allowing firms to learn in a Bayesian

manner from other wells. The industry thus has common knowledge in every period, knowledge

that affects both stages of the two-stage decision described above. Having decided to drill, more

17Modeling each well as an independent firm follows Kellogg (2014), but is potentially less realistic in my context,
where firms are actively learning about how to increase productivity. It amounts to an assumption that firms with
multiple potential wells treat them independently. As I demonstrate in Appendix A, learning in the industry appears
to be operating primarily at the inter-firm rather than intra-firm level, which suggests this assumption is reasonable.

18As discussed above, Anderson et al. (2014) reformulated the benchmark model of Hotelling (1931), demonstrating
that due to technological limitations on the production function, an oil firm’s key production decision is when to
drill a new well rather than how much oil to produce from an existing well. That is, the operator’s problem is best
construed as when to “tap another keg” instead of how to adjust the flow from already-tapped kegs. This is confirmed
empirically in Newell et al. (2016) and Newell and Prest (2017), who find that new drilling is the primary margin of
response to increased prices in natural gas and oil production, respectively.
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knowledge might change how the firm drills and its expected profits. In turn, the firm anticipates

the possibility of learning, and so may have additional option value from waiting. Modeling details

on knowledge and learning follow a discussion of the static problem below.

4.1 Static Overview

I begin with the static problem of a firm i that has decided to drill in month t. The quantity of oil

produced by well i is a linear function of a vector of inputs x and an iid shock:

qi = β0 + x′iβx + εqi . (2)

Firms are price-takers in the global market, and receive price pt per barrel of oil produced. The

cost function is also linear in inputs:

ci = ω0 + x′iωx + εci , (3)

where εc is an iid cost shock.19

With these functions defined, I then write profits:

π(xi, pt, φi) = (ptqi(xi)− ci(xi))1{φi > g(xi)} . (4)

Profits take the usual form, multiplied by a binary term governing feasible well scale. That is, if

the realization φi is less than g(xi), then the well is a failure and no profits are realized.20

Going forward, I limit xi to be a scalar: gallons of fracturing fluid per foot of wellbore.21 I set

19My cost data is not dense enough to reliably estimate changes in drilling and completion costs over time, so I treat
c(x) as fixed. An alternate possibility would be to model drilling costs as a function of oil prices (and consequently
drilling demand).

20The well-scale shock could take alternate forms, but I use the simplest modeling choice that produces the desired
shape in the expected profit curve: the important thing is that there is an input cutoff above which firms expect to
realize lower profits. This shape could also be achieved with a penalty function that added extra costs, or reduced
output or revenues.

21The fracturing design has many dimensions, and in principal I could account for more than one, such as pounds of
proppant, number of stages, pressure, etc. In practice though, I quickly run up against the “curse of dimensionality”
in the dynamic game, as the dynamic state has two dimensions for every input (including a constant). I select fluid
intensity, but in my sample it has a 65.8% correlation with proppant intensity.
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g(x) as the identity function. I also define the vector Xi ≡ [1, xi] for notational convenience.

I model the scale shock φ as following a logit distribution with parameters γ∗:

Pr(φ > xi) =
1

1 + exp(−X ′iγ∗)
. (5)

An example of the shape of Pr(φ > x) is shown in Figure 8. Further, φ is a latent variable in that it

is not directly observable. Rather, it is only observed through the binary outcome Ai ≡ 1{φi > xi}.

So each well is observed as either a ‘success’ (Ai = 1) or ‘failure’ (Ai = 0).

Figure 8: Example of Expected Probability of Success

Notes: plot of an example curve from Equation 5, depicting the anticipated probability of realizing φ > x.

This construction can be interpreted as a model of reservoir integrity: a more intense stimulation

can yield greater output, but could also cause reservoir damage and reduce well productivity.

For models of fluid damage to reservoirs, see e.g., Bahrami et al. (2012), Putthaworapoom et al.

(2012), and Eveline et al. (2017) from the petroleum engineering literature. This simplified model

fits sensibly with the dynamic of progress in hydraulic fracturing: the basic technology has been

around since the 1960s, but the recent revolution has observed much higher fracture intensities as

a result of firm experimentation. The model is also consistent with the finite fracture intensities

observed in my sample: even when the marginal costs of additional fluid are low relative to expected

revenue of additional oil produced, the additional fluid increases the risk of reservoir damage.
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Firms are uncertain about (and will learn about) the parameters γ governing the distribution

of φ. I model their uncertainty as Bayesian, with multivariate normal priors: γ ∼ N (µ,Σ). For

convenience, I will refer to the firm’s prior or information state as Γ ≡ (µ,Σ). The dynamic state

governing drilling decisions will be the combination of information and oil prices: S ≡ (p,Γ).

A firm that has decided to drill in state S, chooses inputs x so as to maximize expected profits:

x∗(S) = arg max
x

E [(pq(x)− c(x))1{φ > x}] (6)

= arg max
x

(pq(x)− c(x))

(
1

1 + exp(−X ′µ)

)
. (7)

From these equations, linearity in q(·) and c(·), and concavity in Pr(φ > ·), we can see that each

state S maps to an optimal input choice x∗(S). For convenience I will also define expected profits

in a given state, assuming optimal input use, as:

π(S) = (pq(x∗(S))− c(x∗(S)))

(
1

1 + exp(−X∗(S)′µ)

)
(8)

4.2 Learning

Firms are statistically savvy, and change their estimates of γ to incorporate new information. Their

Bayesian updating process is more challenging than most that have been used in empirical economics

because they only ever observe Ai and xi and never φi directly. This complication leads to non-

conjugate posterior probabilities, which quickly limits empirical tractibility. To simplify the analysis

I assume that firms update from a normal prior to a normal posterior using ‘moment-matching’:

essentially approximating a non-normal posterior with a normal posterior. This method, under

various names, has been used and explored in a number of statistical fields (Powell and Ryzhov,

2012); the specific form developed here follows derivations in Jaakkola and Jordan (2000).

This method yields convenient formulas for updating prior beliefs after observing n wells, Γn =
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(µn,Σn) to posterior beliefs Γn+1 upon observing information for well n+ 1, (Xn+1, An+1):

Σn+1 =
[
(Σn)−1 + 2λ(ηn+1)Xn+1X

′
n+1

]−1
, (9)

µn+1 = Σn+1

[
(Σn)−1µn +

(
An+1 −

1

2

)
Xn+1

]
, (10)

where the quantity ηn is

ηn ≡
√
X ′nΣnXn +X ′nµ

n , (11)

and the function λ is defined

λ(•) ≡
tanh

(•
2)

4 •
. (12)

Several graphical illustrations of Equations 9 and 10 are shown in Figure 9. The prior expected

probability of success is depicted as a black solid line, and four calculated posteriors are considered:

whether the observed well is a success (solid line) or failure (dashed line); and whether the observed

input is high (blue) or low (red). For example, when a high level of input is used, the prior expected

probability of success is quite low. Thus if a failure is observed, the posterior is only shifted slightly

to the left. Conversely, an observed success is quite surprising, and causes a large move in the

posterior to the right. The opposite pattern is true for a low input well, when the prior expected

probability of success is high: a success does little to change the posterior, but a failure moves the

posterior significantly to the left.

This asymmetric learning is a useful feature of this model: it allows the value of new information

to depend on its relative novelty. This matches the industry dynamic of paying close attention to

the success of the largest new stimulations, while learning little from the thousandth well stimulated

in a tried and true fashion far beneath the frontier. Importantly, it also provides a nice model of

how the frontier moves over time, as firms push the limits of feasibility incrementally; this will

allow it to be useful in explaining the trends shown in Table 2 and Figure 3.
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Figure 9: Examples of Learning

Notes: graphical example prior and posteriors; all curves depict the anticipated probability of realizing φ > x
from Equation 5. Posteriors are calculated using Equations 9 - 10. The solid black curve is the prior. Red
and blue curves correspond to posteriors from low and high input observations, respectively; solid curves
indicate an observed success An+1 = 1, and dashed curves indicate observed failure.

4.3 Dynamic Overview

Having outlined the firms’ static decision and learning process, I turn to the dynamic problem of

when to drill. This is modeled as an optimal stopping problem: in each period, the firm can drill

its well (entering the static problem described above, realizing shocks and profits), or wait until the

next period when it will face the same decision, potentially in a more profitable state. Recall that

the dynamic state governing expected profits is St ≡ (pt,Γt). State S in period t is made up of the

current price of oil p and the current information state Γ, so the firm may have option value from

changing oil prices and changing information. Once a well is drilled, it realizes shocks determining

costs, revenues, and profits, and exits the game. I assume that potential wells are infinitely-lived,

that drilled wells are replaced in the potential entrant pool each period (constant potential number

of wells drilled each period), and that each potential well observes an iid normal profit shock ξ

before deciding whether to drill.22,23

22This assumption removes the issue of leasing decisions and lease expirations, which are potentially important. In
practice, estimated drilling probabilities are high enough to suggest wells would be drilled before the expiration of
standard leases.

23The shock ξ functions primarily as an empirical device to help the model rationalize observed drilling decisions.
See discussion in Kellogg (2014), where stochasticity in q(·) plays a similar role.
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I recall the definition of expected profits in a state from Equation (8), drop time subscripts,

and rewrite the firm’s drilling problem in a Bellman setup:

V (S, ξ; θ) = max
{
π(S) + ξ, δE[V (S′, ξ; θ)|S, θ]

}
. (13)

V (S) gives the value of an undrilled well in state S, and δ ∈ (0, 1) is the shared discount factor.

Normal parameters θ = (µξ, σξ) govern the distribution of ξ, and as I show below, affect the

expected value of waiting. Given this, a well is drilled if and only if current expected profits,

π(S) + ξ, are greater than or equal to the discounted value of waiting, δE[V (S′, ξ; θ)|S, θ]. Under

some regularity conditions, this rule can be re-expressed in terms of a cut-off value of ξ: for each

state S, there exists a cutoff ξ∗(S) that governs drilling decisions. Wells with ξ ≥ ξ∗(S) drill,

otherwise they wait.24

The final piece of the dynamic model is the expected value of waiting,

E[V (S′, ξ; θ)|S, θ] ≡
∫
S′
V (S′, ξ; θ) Pr(S′|S, θ) , (14)

where Pr(S′|S, θ) denotes the true probability of moving from state S to state S′ in the next

period. The state transition is composed of two parts: Pr(p′|p), and Pr(Γ′|Γ, p). Prices change

exogenously, and Γ changes as wells are drilled, create new information, and that information is

incorporated according to the Bayesian updating rules (9) - (10). A firm that waits may have a new

expected profit in the next period – not only because of a change in price, but also because of new

information. Written in this way, the challenge of an endogenous equilibrium emerges. The decision

of whether to drill a well this period or not depends on the value of waiting E[V (S′, ξ; θ)|S, θ]. In

turn, the value of waiting depends in part on the possibility of learning new information (in S′),

which depends on others’ decisions to drill. I discuss this expectation term in further detail in

Section 5.4, where I also describe how it is calculated empirically.

24From Dixit and Pindyck (1994), the conditions are that the value of waiting for one period is monotonic in ξ for
any S, and that the distribution of π(S′) + ξ has positive persistence.
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Given these components, I define a dynamic social learning equilibrium:

Definition. An equilibrium is a state space S, policy functions ξ∗(S), and transition beliefs P̃r(S′|S)

such that ∀S, S′ ∈ S:

1. Drilling decisions follow the policy function ξ∗(S), defined implicitly by

π(S) + ξ∗ = δE[V (S′, ξ∗; θ)],

so that a well is drilled if and only if ξ > ξ∗(S); this cutoff represents the optimal drilling

policy given beliefs P̃r(S′|S). π(S) is given by Equation (8) and E[V (·)] is defined according

to Equation (14).

2. Pr(S′|S) are defined by exogenous price transitions, and information states that evolve as new

wells are drilled and observed. Information is incorporated according to Bayesian updating

rules (9) - (10).

3. Expectations are rational, i.e. optimal behavior ensures that state transition beliefs are self-

fulfilling, so P̃r(S′|S) = Pr(S′|S).

Solving for this equilibrium empirically is computationally costly. I describe my approach in

the following section.

5 Empirical Model and Estimates

This section describes how I take the above model to the data and presents estimates.

5.1 Static Profits

Wells produce oil over many periods. I follow industry practitioners in modeling production with

a deterministic decline curve (known as an Arps model), so that IP is a sufficient statistic for

production over the life of the well.
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In addition to knowing future production, firms have expectations of future oil prices informed

by the futures curve. Using the common industry annual discount factor δ = 0.9, I can then write

the revenue function as:

rev(S) = ψ

τ̄∑
τ=0

δτpfτ qτ (x∗(S)) , (15)

where ψ = 0.7 is the share of oil revenue accruing to the leaseholder, pfτ is the expected per-barrel

price of oil in period τ and qτ is production in period τ .25 I set τ̄ = 240 months, shorter than

the industry’s expectation of 540 months. However, the decline curve and discount rate are steep

enough that total expected revenue is not very sensitive to increasing τ̄ .

Because decline curves are deterministic, the expected revenue function can be expressed even

more simply in terms of initial production.

rev(S) = ψ ∗ 30 ∗ p ∗ h ∗ IP (x∗(S)) ∗
τ̄∑
τ=0

δτζτ , (16)

where IP (x∗(S)) is initial production per foot of horizontal lateral, expressed in barrels / day, h is

the length of the lateral, in feet, 30 is the number of days per month, and ζτ is per-day production

in month τ as a fraction of IP .26 Well lengths are taken to be exogenous, for now the later-year

standard of 10, 000 feet. Finally, p is the “flattened” price incorporating information from futures

contracts out to 60 months:

p =

∑τ̄
τ=0 δ

τpfτ ζτ∑τ̄
τ=0 δ

τζτ
, (17)

where pfτ is the futures price τ months in the future. For months after 60, I assume constant oil

prices, i.e. pfτ = pf60 for τ > 60.27

So the only non-deterministic component of rev(S) is IP (x∗(S)). Initial production per foot is

25The selected discount rate corresponds to an interest rate of 11.11%. The share of oil revenue not accruing to
the well operator represents a typical royalty rate to the mineral rights lessor of 16.5%, state taxes of 11.5%, and a
small marginal cost of 2% (Covert, 2015).

26The decline curve ζτ is estimated non-parametrically in a first stage, using the well-month level production data:
ζ̂τ is found as the empirical mean of month τ production per day as a fraction of reported IP.

27The first two months in my sample (January and February 2006), only have futures prices out to 28 months. For
those months I assume constant prices after 28 months.
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given by a relationship of the following form:

IP (xi) = β0 + β1xi + εqi , (18)

where xi is gallons of fracturing fluid used per foot.28 Drilling and stimulation costs are given by:

c(xi) = ω0 + ω1xi + εci . (19)

The simple production and cost coefficients β̂ and ω̂ that will be used in Equation 8 are estimated

by OLS and reported in Table 5.29 The production estimates demonstrate an increasing relationship

between fracturing fluid intensity and initial production. Cost estimates are calculated on the subset

of wells that can be matched to an AFE, and suggest an average well cost of $8.0 million.

Table 5: Production and Cost Regressions, for Dynamic Model

IP per Thousand Feet Cost, $1,000

Intercept 107.760∗∗∗ 7, 105.659∗∗∗

(1.785) (181.259)
Gallons Fluid per Foot 0.068∗∗∗ 3.016∗∗∗

(0.005) (0.490)

Observations 7,634 299

Notes: Production regression includes all wells in the sample with non-missing IP and input data. The cost regression
includes wells in the AFE sample that could be matched to the input dataset, see Section 3.4 for details. ∗, ∗∗, and
∗∗∗ indicate statistical significance at the 10, 5, and 1 percent levels.

28In principal, x could be a vector containing other stimulation choices such proppant, pressure, injection rate,
stages, chemicals, etc.; in practice, however, the computational feasibility of the learning model will be limited by
the dimensionality of x. I select gallons of fracturing fluid as the single input closest to a sufficient statistic for the
fracture intensity.

29One might worry that xi is endogenous if firms have any knowledge of εqi . I argue that this is not a major concern
in this setting. Fractures involve major logistical challenges, and are designed far in advance of drilling. Conversations
with industry participants suggest that any last minute changes to inputs tend to be marginal.
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5.2 Price Transitions

I estimate Pr(p′|p) under the assumption that flattened prices are a martingale process with normal

errors:

p′ = p+ εp , εp ∼ N (0, σp) , (20)

and recover a point estimate of σp = 5.428 with maximum likelihood.30 For my dynamic application,

I then form a matrix Pr(p′|p) by simulating 10,000 draws from each point on an evenly spaced grid

with 15 nodes from $30 to $120.

5.3 Well Inputs and Learning

As in the abstract model, a firm that drills in state S calculates its optimal expected input x∗(S)

using Equation (6). However, as can be seen in Table 2 and Figure 3, there is significant variation

in observed inputs, even in the same time period. To match this input dispersion, I assume that the

actual input used is stochastic: xi(S) = x∗(S)εxi , where εxi is distributed εxi ∼ LogNormal(0, σx).31

I estimate σx as the mean across months of observed within-month standard deviations of the log

of observed inputs, and recover a value of σx = 0.577.

The industry updates priors Γ in the approximate Bayesian fashion described in Equations (9)

- (10) to incorporate information from new wells. A new well observation is a pair (xi, Ai). Input

xi is per-foot gallons of fracturing fluid, and outcome Ai is an indicator for whether the treatment

was successfully completed in a timely fashion.32

Next I describe the process of estimating the information states {Γ}t using observed well data

and the model. It is worth emphasizing that these information states are estimated outside the

dynamic model; they are identified by the observed sequence of well inputs and outcomes, the

30Alquist and Kilian (2010) show that a non-change forecast for the spot price of oil outperforms many other
forecast methods, including the use of the futures curve.

31Different wells drilled in similar areas at similar times, often even by the same firm, can have a wide range of
stimulation configurations. Conversations with industry participants confirm that this variation is attributable to
experimentation and iteration. This is outside the model in Section 4.

32Specifically, Ai = 1 ⇐⇒ the treatment was completed in less than 75 days per fracture stage; this represents
the 95th percentile of treatment days per stage, which has a heavily skewed distribution.
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optimal input rule (6), and updating equations (9) - (10). Intuitively, the level of inputs used and

Equation (6) identify prior means {µ}, and the rate of change in inputs and updating equations

identify prior variances {Σ}. I provide more detail and results below.

First, recall that an information state is made up of a prior mean and covariance, Γ = (µ,Σ).

Next, note that the Bayesian updating Equations (9) and (10) describe the calculation of Γn+1

given Γn, xn+1, and An+1. In other words, they form a function mapping a prior information state

and information on a new well to a posterior information state, Γ× (x,A) 7→ Γ′

Now consider the sequence of observed well data {xi, Ai}I .33 The mapping described above can

be applied iteratively, so that an initial prior Γ0 combines with a sequence of well data {xi, Ai}I

to yield a sequence of posteriors {Γi}I . I use dates of well completions to translate this sequence

of posteriors into the time periods of the model, {Γt(Γ0)}, where my notation makes explicit the

dependency on the original prior, and dependency on well data is implicit.

The next step is to observe that Equation (6) is a model-derived mapping from an information

state Γ and price p to an optimal input x∗. I use this second mapping to generate a sequence of

optimal inputs given initial priors (explicit), and observed well information and prices (implicit):

{x∗t (Γ0)}.

Finally, I proceed to estimate priors by minimizing the sum squared distance from predicted

inputs to observed inputs:

Γ̂0 = arg min
Γ0

∑
t

(
x̄t − x∗t (Γ0)

)2
, (21)

where x̄t is the average input use in month t.34 I perform this minimization using a grid search in

Γ0, and report estimates in Table 6.35

33I observe Ai directly for all wells that are present in the FracFocus database (roughly 2012 and later). I calculate
a fitted value of Âi using observed xi and the econometrician’s estimate of γ for earlier wells.

34I estimate priors trying to fit monthly averages because the number of wells drilled in each month varies sig-
nificantly across the sample; an alternative objective function like arg min

∑
i

(
xi − x∗i (Γ0)

)2
would underweight the

low-input wells observed in the early months and the high input wells observed in the late months, and thus understate
the learning process.

35I restrict Σ to have zeros in the off-diagonal in order to reduce the dimensionality of my dynamic state space.
In practice this is innocuous: when I allow non-zero off-diagonal elements, they are always estimated to be orders of
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Table 6: Information State Estimates

t = March 2006 t = March 2017

µ̂t
[

39.0
−0.4

] [
10.2
−1.1e−2

]
Σ̂t

[
0.043 0

0 1.1e−5

] [
3.0e−3 0

0 1.2e−8

]

Notes: estimates of information states Γt, estimated via grid search. See text for details.

5.3.1 Value of Information

Figure 10 plots monthly mean inputs observed in my data, as well as the model’s prediction using

{x̂∗t (Γ̂0)}. The figure illustrates that the four estimated paramters in Γ̂0, combined with observed

wells {xi, Ai}I , β̂, ω̂, and Equations (9) and (10) produce a coherent explanation of increasing

fracture intensities.

Figure 10: Model Predicted and Observed Inputs

Notes: observed means are calculated at the monthly level. Estimates plot the sequence of optimal inputs
given estimated information states, {x̂∗t (Γ̂0)}. See text for details.

magnitude smaller than Σ22.
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With an estimate of the industry’s priors, I can also quantify the contribution of information

to expected profits as per the model. Figure 11 illustrates the results of this calculation, where the

graph is plotting the ratio
π(pt, Γ̂

t)

π(pt, Γ̂0)
, i.e. the modeled expected profit in a given month divided by

the modeled expected profit if no learning were to have taken place. The emphasizes that learning

has value – the bigger wells that operators are learning to drill are associated with higher expected

profits.

Figure 11: Ratio of Expected Profits: Learning to No Learning

Notes: plot of π(pt, Γ̂
t)/π(pt, Γ̂

0) over time, illustrating the gains from Γ̂t relative to Γ̂0.

A graphic illustration of success probabilities with Γ̂t, for t ∈ { January 2007, January 2012,

January 2017 }, and expected profits using a $60 price of oil are shown in Figures 12 and 13. Figure

12 demonstrates how the industry has incorporated new information and significantly updated the

expected probability of well success at midrange input levels. Figure 13 translates this change in

prior to a change in expected profit, assuming a $60 price of oil: firms opt for higher inputs and

expect higher profits in 2017 than they did in 2007.

For comparison, I also present the econometrician’s estimate of γ in Table 7, estimated via logit
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Figure 12: Modeled Success Probabilities

Notes: anticipated probabilities of realizing φ > x under three different information states Γ̂t: January 2007,
January 2012, and January 2017.

Figure 13: Modeled Expected Profits

Notes: NPV of expected profits for various input levels using a $60 price of oil, under three different
information states Γ̂t: January 2007, January 2012, and January 2017.
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regression on the subsample of wells in the FracFocus dataset.

Table 7: Econometrician’s Estimate of φ Parameters

γ

Intercept 3.70∗∗∗

(0.08)
Gallons Fluid per Foot −1.42e−3∗∗∗

(9.81e−5)

Observations 7,646

Notes: Logit regression results for failure parameters γ, on the sample of wells included in FracFocus dataset. Outcome
variable Ai is an indicator of timely well completion (treatment less than 75 days per stage), and xi is the gallons of
fracturing fluid per foot. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10, 5, and 1 percent levels.

5.4 Calculating Value Functions

With all of the components for static profits and learning, I turn to solving for the equilibrium

value functions. To begin, recall the form of expected values:

E[V (S′, ξ; θ)|S, θ] ≡
∫
S′
V (S′, ξ; θ) Pr(S′|S, θ) . (22)

If I knew the transition probabilities Pr(S′|S, θ), I could calculate the value functions V with a

simple contraction mapping, as in Rust (1987). In my setting I cannot reasonably infer Pr(S′|S, θ)

from the data in a first stage, as the transition probabilities are endogenous with the value functions.

Instead, I use a monte carlo simulation and interpolation to derive E[V (S′, ξ; θ)|S, θ]. Ultimately

I require that the values V (S, ξ; θ) and expected future values E[V (S′, ξ; θ)|S, θ] are mutually consis-

tent, and consistent with the model primitives as outlined in the Equilibrium Definition of Section

4.3. I describe the solution method in more detail below, and note now that it is similar in spirit

to that used in Krusell and Smith (1998), or could be termed “Monte Carlo Value and Policy

Iteration” in the approximate dynamic programming language of Powell (2007).

As global oil prices are exogenous to the state of drilling knowledge in North Dakota, I can
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re-express the expected values as:

E[V (Γ′, p′, ξ; θ)|Γ, p, θ] =
∑
p′

∫
Γ′
V (Γ′, p′, ξ; θ) Pr(Γ′|Γ, p, θ) Pr(p′|p) , (23)

where Pr(p′|p) is discretized and estimated as described in Section 5.2.

Next I turn to the more challenging dimension of the expectation, Pr(Γ′|Γ, p, θ). I begin by

rewriting it as:

Pr(Γ′|S, θ) =

K∑
k=1

Pr(k wells drilled|S, θ) Pr(Γ′|k wells drilled, S, θ) . (24)

I set K, the maximum number of possible wells per month as 500, more than twice the maximum

observed in the sample. For the purposes of simulation, the first quantity is known up to the

distribution θ and cutoff ξ∗(S; θ): a well is drilled with probability ρ(S; θ) ≡ Pr(ξ > ξ∗(S)|θ), so

the probability that k wells are drilled follows a binomial distribution. The remaining unknown

quantity is Pr(Γ′|k wells drilled, S, θ). This does not have a closed-form solution and must be

simulated.

So I proceed with a monte carlo approach, outlined in Algorithm 1. I begin with the first state-

shock combination S, ξ on my grid.36 First, I calculate the cutoff ξ∗(S; θ) and drilling probability

ρ(S; θ). Next, I proceed to the monte carlo portion. For each of R sub-iterations, I draw a scale

coefficient γ̃r from Γ and kr from a Binomial(K, ρ(S; θ)), which I use to simulate kr new wells.

For each simulated well, I simulate inputs x̃ by scaling optimal inputs x∗(S) with drawn input

shocks εx; I then simulate well success and failure Ã using γ̃r. After simulating k wells, I use

Equations (9) - (10) to calculate Γ̃′
r

using {x̃}k and {Ã}k. With Γ̃′
r

in hand, I interpolate to get

Ṽ (Γ̃′
r
, ξ; θ) =

∑
p′ Ṽ (Γ̃′

r
, p′, ξ; θ) Pr(p′|p). I repeat this procedure for 2,500 monte carlo draws, and

average over the results to get E[V (S′, ξ; θ)|S, θ]. This entire procedure is then repeated for all

36As mentioned previously, p is gridded into 15 points. The Σ dimensions are each gridded into 6 points, the µ
dimensions are each gridded into 12 points, and ξ is gridded into 25 points, for a total of 1.9 million S, ξ combinations
considered. The endpoints of the Σ and µ dimensions encompass estimated information states {Γ̂}, and the endpoints
of ξ are plus / minus 3 standard deviations from the mean (given by θ).
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states S and shocks ξ.

The above simulation of E[V (S′, ξ; θ)|S, θ] is nested within a fixed point iteration to find the

equilibrium V (θ), as outlined in Algorithm 1. The process begins with value functions calculated

from a myopic model, and is repeated until convergence.37,38 Convergence is checked in the sup-

norm of E[V (S′)|S], and I am using a tolerance of $15, 000.39

Begin with model primitives, and θ ;
Solve myopic problem for starting values V 0(S, ξ; θ) ;
Initialize dist > tol, q = 1, R = 2, 500, K = 500 ;
while dist > tol do

foreach S, ξ do
calculate cutoff ξ∗(S) ;
calculate drilling probability ρ(S; θ) ;
for r = 1 : R do

draw γ̃r ∼ Γ(S) ;
draw kr from Binomial(K, ρ(S; θ)) ;
simulate kr new wells using x∗(S) and γ̃r ;

calculate Γ̃′
r

using Equations (9) - (10) ;

interpolate Ṽ (Γ̃′
r
, p′, ξ; θ) using V q−1 and Pr(p′|p) ;

end

set E[V q ′(S′, ξ; θ)|S, θ] ≡ 1
R

∑
Ṽ (Γ̃′

r
, p′, ξ; θ) ;

end
update value functions V q(S, ξ; θ) = max{π(S) + ξ, δE[V q(S′, ξ; θ)|S, θ]} ;
dist = sup |V q − V q−1| ;
q = q + 1 ;

end Algorithm 1: Monte-Carlo Value Function Iteration

5.5 Estimation of Dynamic Model

Now I turn to estimating the dynamic parameters in the model, θ ≡ {µξ, σξ}, along with the values

V (S). This estimation procedure requires solving the nested fixed point detailed in Algorithm 1

for every candidate value of θ. As it is computationally costly to solve this fixed point, I estimate

37I use temporal difference learning to smooth the convergence process. I use a burn-in period of 25 iterations,
after which I use an updating weight of 1

iter #−25
. This approach meets the criteria laid out for convergence outlined

in Chapter 6 of Powell (2007).
38In the myopic model, firms assume that they will not learn (Pr(Γ′|Γ) = 1), so I can use a standard fixed point

contraction mapping.
39Robustness checks around the number of forward draws, convergence criterion with simulated versions have so

far shown that these selections are robust.
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µξ, σξ with a grid search.40 Estimates below are presented for the best θ̂ found from this search.

I evaluate the fit at each candidate θ as follows. First, I solve the nested fixed point and

retrieve V (S; θ), and E[V (S′)|S; θ]. Then, to determine model fit, I calculate a non-linear least

squares objective:

Q(θ) =
∑
t

∑
i∈t

(1{drilledit} − ρ(St, θ))
2 , (25)

where t denote months in the data, i ∈ t denote potential wells in month t, 1{drilledit} is an

indicator that well i was drilled in month t, ρ(St, θ) is the probability of drilling given the state St

and the calculated value and policy functions.

The critical assumption for this fit process is on the number of potential wells in each month.

While my data contains the number of wells drilled every month, it is impossible to say with

certainty the number of potential wells in each month that were not drilled. I proceed with the

assumption that there are K = 500 potential wells in each month of my data, and maintain

this assumption in the next section when I simulate counterfactual industry outcomes. This is

significantly higher than the maximum number of wells, 240, observed in a single month. I restrict

the estimation sample for the dynamic parameters to January 2009 onwards. This represents a

point before the boom accelerated, but after the Bakken began to see a significant number of

monthly completions.

This procedure yields estimates of µξ = −3e7, and σξ = 2.8e7. Figure 14 gives an idea of how

the estimated model fits in terms of predicted drilling patterns over time. The model captures the

acceleration of drilling as oil prices rise and operators become more knowledgeable, as well as the

deceleration with the collapse of prices in late 2015.

I next consider the effect of the social learning externality on drilling decisions. For each month

in my data, I compare the equilibrium drilling cutoff ξ∗(St), and the cutoff under a myopic model,

where agents assume Pr(Γ′|Γ) = 1, labeled ξ∗MY (St).
41 The first row of Table 8 presents some

40For a sense of the computational cost, it takes 250 cores on the Duke Compute Cluster on the order of 2 hours
to solve the dynamic problem for a single θ to a tolerance of $15,000 when the state space is gridded into roughly 2
million points. Code is written in Julia.

41Calculation of the myopic model is a much simpler fixed point contraction, as transition probabilities are now
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Figure 14: Actual vs. Model-Predicted Drilling

Notes: The black line plots ND Bakken completions by month. The red line plots mean model simulated
drilling by month, given observed prices, estimated information states {Γ̂t}, and estimated policy functions
and dynamic parameters; shaded area represents the middle 95% of outcomes from 1,000 simulations.

quantiles of these differences - it can be seen that in most states, the cutoff rule is higher under

rational expectations, indicating that the possibility of learning is adding to the value of waiting.

However, the second row shows that when these differences are translated into drilling probabilities,

the magnitudes are negligible.

Table 8: Dynamic Impact of Rational Expectations

Quantile
5% 25% 50% 75% 95%

ξ∗ − ξ∗MY -675 238 1,148 6,228 24,646
ρ− ρMY -3.1e−4 -6.9e−5 -1.0e−5 -1.2e−6 2.3e−6

Notes: Quantiles of estimated differences between the rational expectations and myopic models. The quantities are
calculated for all empirical states observed, using θ̂.

I conclude that although learning has played an integral role in the industry’s development,

the value of anticipated social learning in the states on the estimated information path is not large

enough to appreciably change investment decisions. Restated, firms have low enough uncertainty

that they do not place much value on the possibility of moving to new information states. In the

known and exogenous.
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next section, I consider how this assessment changes when agents are estimated to have higher

uncertainty - this could be a model for the industry in an earlier stage, learning about a new

formation, or as a result of limited attention.

6 Counterfactuals

This section re-estimates industry priors under the assumption that only a limited number of wells

are observed each month. The new information states lead to a similar learning path, but with

much higher prior variances. The higher variances lead to significant differences between equilibrium

behavior under rational expectations, and the alternative where drillers are myopic with respect to

learning. I show that the expectation of social learning leads to a free-riding dynamic with lower

levels of drilling and learning. Finally, I demonstrate how this dynamic can be overcome through

subsidies and/or public test wells.

6.1 Alternative Prior Estimates, Limited Attention

I begin by re-estimating industry priors, but using only a subsample of wells. The subsample is

constructed by randomly selecting ten wells in each month, without replacement (if the month

has ten or fewer wells, I select them all). Figure 15 demonstrates that the estimates using this

subsample are still able to fit the industry’s learning curve. However, a comparison between Table

9 and Table 6 shows that the estimated priors are much looser. This is sensible, as the means µ

undergo a similar change despite a far smaller set of information.

6.2 Industry Progression under Looser Priors

I now present results showing that expected social learning can result in a free-riding dynamic,

slowing drilling, and thus the learning rate of the industry. I do this by using simulating 1,000 coun-

terfactual industries, using my estimates of θ above, and re-solving the value functions V (S, ξ; θ)
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Figure 15: Model Predicted and Observed Inputs, Limited Attention Alternative

Notes: observed means are calculated at the monthly level; information states are estimated using a random
subsample of wells, with 10 wells from each month.

Table 9: Information State Estimates, Limited Attention Alternative

t = March 2006 t = March 2017

µ̂t
[

21.0
−0.43

] [
4.7

−3.6e−3

]
Σ̂t

[
12.4 0

0 2.1e−4

] [
1.4e−2 0

0 5.5e−8

]

Notes: estimates of information states Γt, found via grid search, using only a random subsample of wells, with up to
10 wells for each month.

43



on a grid of the new region of S.42 I simulate three different scenarios: first, the baseline case with

rational expectations; second, a case where wells are myopic about the possibility of learning, but

incorporate new information when it arrives; third, a case where 25 public test wells are drilled at

the beginning of the game to provide additional information.

For all simulations, I begin with the same starting information state of

µ =

11.09

−0.04

 Σ =

7.5 0

0 5.0e−8

 ,
where the relatively loose priors mimic early uncertainty. I simulate with a constant $75 price of

oil to focus on the effects of social learning (though agents are still expecting the possibility of oil

price swings). Finally, I hold the potential entrant assumption constant at 500 wells per period,

and make sure that each of the three scenarios shares identical shocks across simulations.

The results are shown in Figures 16 - 17. Figure 16 plots mean drilling levels across the 1,000

simulation runs. It demonstrates that the rational expectation of social learning is an important

factor when priors have higher uncertainty: fewer wells are drilled in the baseline case as the extra

value of anticipated social learning causes more wells to wait before drilling. The figure also shows

that the extra information provided by the test wells leads to more drilling under that simulation.

Figure 17 plots expected profits π(S) in each period across simulations. The first thing to note

is that drilling is higher under the myopic than the baseline simulation, even while expected profits

are quite similar, highlighting that the social learning effect is operating through the δE[V (S′, ξ; θ)

channel. Moreover, the higher levels of early drilling lead to higher expected profits in later periods,

demonstrating the possibility of positive feedback loops between investment and learning in this

model. The figure also shows that the test wells provide valuable information in terms of expected

profits; however, drilling levels are still lower than under the myopic simulations, as the expectation

42The new state-space grid has the same grid points in the p and ξ dimensions, but new points in the Γ dimensions,
as informed by the alternative estimates of {Γ̂}. The number of points in each dimension is unchanged from the
baseline case.
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Figure 16: Simulated Drilling

Notes: plotted lines show means across 1,000 simulations.

of social learning continues to matter.

Figure 17: Simulated Expected Profits

Notes: plotted lines show means across 1,000 simulations.

Finally, I consider a back of the envelope cost-benefit analysis of the test well program. The

25 test wells have a simulated cost of $189.9m. In terms of benefits (and disregarding any revenue

from the test wells), I calculate that the better information leads to an incremental NPV of $173.0m

to the state, and $248.1m to private leaseholders, assuming a tax rate of 11.5% and a royalty rate

of 16.5%. Finally, I calculate an incremental NPV of $1.7b in profits to the operators drilling the

wells.
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Table 10 shows similar welfare caulculations (with benefits aggregated) across different assump-

tions for the prevailing oil price and number of public test wells drilled. These figures demonstrate

that public tests of a new technology can be welfare enhancing by accelerating the joint processes

of investment and learning.

Table 10: Public Test Welfare, Alternative Assumptions

Wells Cost NPV Aggregate Benefit
$55 $65 $75 $85 $95

5 -38.0 123 415 2,065 2,939 3,138
25 -189.9 95 330 2,130 3,548 4,747
50 -379.7 24 230 1,806 3,325 4,682

Notes: Figures are in millions of dollars. Assumptions include a constant price of oil and 50 month simulation run.
Calculated values are incremental to simulated baselines, and discounted to NPVs. In all instances, the test wells are
assumed to provide no monetary benefits. Tax rate: 11.5%; royalty rate: 16.5%.

7 Discussion

In this paper, I have developed a dynamic model of industry investment with endogenous social

learning. I estimated the model using data from the shale oil industry in North Dakota’s Bakken

formation, where I find that learning has played a significant role in increasing the industry’s

profitability. However, my dynamic estimates reveal that anticipated social learning has had little

to no effect on the industry’s recent development: the estimated prior variances are too low to

allow for much value from new information.

In the final section, I considered a counterfactual scenario of industry development under less

less certain priors, as might correspond to the earliest stages of the industry, learning about a new

formation, or limited firm attention. Here I found that the possibility of social learning can lead

to a free-riding dynamic, where firms delay investment in order to learn from others. I show that

this dynamic can lead to sizable differences in the industry’s progress up the learning curve: less

drilling yields less information, and lower future investment. Finally, I demonstrate that a policy
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designed to increase early information can have a significant effect in overcoming this free-riding:

public test wells provide early information, leading to more investment, and more learning.

Taken together, the results of this paper suggest that policymakers interested in fostering indus-

try development of new technologies face tradeoffs when designing disclosure policies. In the earlier

stages of learning about a new technology, when firms may expect to actively learn from their peers,

disclosure can lead to a free-riding dynamic. In contrast, as the industry’s understanding of the

technology matures and prior variances fall, disclosure may increase welfare by facilitating social

learning without risk of limiting investment.
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A Inter-firm Learning

This appendix presents evidence defending the assumption to treat each potential well as its own
firm. In particular, it argues that the learning in the data takes place predominantly at the inter-
firm level, rather than the intra-firm level. The lack of demonstrable intra-firm learning suggests
that firms are as likely to learn from each others’ wells as their own, and renders plausible the
assumption of treating each well as its own firm.

Figures 18 – 21 graph the distributions of different fracturing configuration variables from the
years 2010 - 2015, with the wells split into two groups: those operated by a firm who entered
the Bakken before 2010, and those operated by a later entrant. None of the input configurations
seem to vary systematically between these two groups, suggesting that the pattern of changing
operational choices is common across the industry rather than intra-firm. Figure 22 shows initial
production per foot of horizontal wellbore in a similar manner, again without striking differences
between early and late entrants. Analagous graphs with a different cutoff year of entry show similar
patterns and are available from the author upon request.

Figure 18: Gallons Fracturing Fluid per Foot by Entrant Date

Notes:
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Figure 19: Fracture Stages by Entrant Date

Notes:

B IP and Cost Predictions

This appendix describes the calculations performed to create Figures 5 and 6.
The first step is a regression of IP on well configuration and location:

qw = βp0 + βphhw + βpssw + βpffw + αpw + εpw, (26)

where qw is the log of initial production, hw is the log of the well’s horizontal length in feet, sw is
the log of pounds proppant, fw is the log of gallons fluid, αw represents a township fixed effect,
and εpw is the regression error. The results of this regression are shown in Table 11.

I then take the estimated coefficients (β̂p, α̂p), and use them to generate predicted values for
each well:

q̂2007
w ≡ β̂p0 + β̂phh

2007 + β̂pss
2007 + β̂pff

2007 + α̂pw (27)

q̂actualw ≡ β̂p0 + β̂phh
actual + β̂pss

actual + β̂pff
actual + α̂pw (28)

q̂2015
w ≡ β̂p0 + β̂phh

2015 + β̂pss
2015 + β̂pff

2015 + α̂pw, (29)

where h2007, s2007, and f2007 denote the median horizontal length, sand, and fluid amounts used
by wells in 2007. Similarly, hactual denotes the actual horizontal length used seen in the data.43.
Thus the fitted values q̂w represent estimates of initial production given the actual geography and

43I project actual inputs on the estimated location effects so that the only differences between the lines in Figure
5 are inputs used
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Figure 20: Fracture Pressure by Entrant Date

Notes:

Table 11: Counterfactual Production Regression Results

Log Initial Production (BBL/day)

Log Feet Length 0.172∗∗∗

(0.040)

Log Pounds Proppant 0.318∗∗∗

(0.018)

Log Gallons Fluid 0.080∗∗∗

(0.016)

Location FE X
Observations 7,634
R2 0.501

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Figure 21: Pounds Proppant per Foot by Entrant Date

Notes:

counterfactual configurations. Figure 5 plots the medians by year of actual completion of these
fitted values, q̂2007

w and q̂2015
w .

The routine for costs is similar. The regression in this case is:

cw = βc0 + βchhw + βcssw + βcffw + εcw, (30)

where cw is the log of well costs in thousands of dollars and the other variables are defined as
before. Note that I assume that location does not affect drilling and completion costs conditional
on configuration choices. The results of this regression are shown in Table 12.

I then use the estimated coefficients (β̂p, ω̂p) to generate predicted costs for each well for which
I do not have a cost estimate:

ĉw ≡ β̂c0 + β̂chhw + β̂cssw + β̂cffw + ω̂cw, (31)

as well as predicted costs for all wells if they were drilled in the mean 2007 and 2015 configurations:

ĉ2007
w ≡ β̂c0 + β̂chh

2007
w + β̂css

2007
w + β̂cff

2007
w + ω̂2007, (32)

ĉ2015
w ≡ β̂c0 + β̂chh

2015
w + β̂css

2015
w + β̂cff

2015
w + ω̂2015. (33)
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Figure 22: Initial Production per Foot by Entrant Date

Notes:

Table 12: Counterfactual Cost Regression Results

Log Cost ($)

Log Feet Length 0.413∗∗∗

(0.058)

Log Pounds Proppant 0.034
(0.028)

Log Gallons Fluid 0.072∗∗∗

(0.022)

Observations 299
R2 0.277

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Finally, I transform the predicted values to levels:

Q̂2007
w = exp(q̂2007

w ) +
σ̂2
p

2
,

Q̂2015
w = exp(q̂2015

w ) +
σ̂2
p

2
,

Ĉw = exp(ĉw) +
σ̂2
c

2
,

Ĉ2007
w exp(ĉ2007

w ) +
σ̂2
c

2
,

Ĉ2015
w exp(ĉ2015

w ) +
σ̂2
c

2
.

I then calculate three quantities for each well:

• Ĉw/Qw - the estimated (or actual where available) cost over actual IP;

• Ĉ2007
w /Q2007

w - the 2007-configuration estimated cost over IP;

• Ĉ2015
w /Q2015

w - the 2015-configuration estimated cost over IP.

Figure 6 plots the median values of each of these three distributions by year of actual completion.

C AFE Sample Selection

Table ?? shows the 10th, 50th, and 90th percentiles of selected variables for two samples: those
wells which can be matched to an AFE, and those that cannot. The final column displays p-values
from a t-test for equality between means. The table shows that on average, AFE wells are drilled
slightly earlier, use slightly less proppant, and produce slightly less oil. However mean lengths and
fluid use are statistically indistinguishable across the groups.
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AFE Non-AFE t-test

N 290 7344
Completion Date 2012-03-24 2012-07-24 0.00

IP Oil
10% 183 250

0.0050% 712 879
90% 1,779 2,342

Horizontal Length
10% 5786 5219

0.8850% 9,454 9,464
90% 10,070 10,126

Proppant
10% 1.58 1.11

0.0050% 2.76 2.79
90% 3.83 4.52

Fluid
10% 1.11 0.79

0.5450% 2.17 2.14
90% 3.43 4.34

Values shown are distribution percentiles.
The final column displays p-values for t-tests of mean equality across
groups.

D Inputs regressed on FEs, 100 bins

Table 13 shows an alternative version of Table 4, when the geographic and date variables are divided
into 100 rather than 25 bins. The conclusions from the table are similar: it appears that when
the well is drilled, and who drilled the well do much more to determine input use than where the
well was drilled. This suggests that the pattern of increasing input use in the data cannot be well
explained by a specific-geography argument.

Table 13: Inputs by Operator, Date and Location; 100 bins

Adjusted R2

Fluid per Foot 0.31 0.22 0.18 0.50 0.36 0.37 0.53
Proppant per Foot 0.30 0.18 0.21 0.49 0.35 0.40 0.53
Stages 0.22 0.31 0.11 0.45 0.27 0.38 0.48

Operator FE X X X X
Date FE X X X X
Location FE X X X X

Note that each entry represents a separate regression.
Dependent variables are listed in the first column.
Included independent variables are denoted by checkmarks, see text of
Section 3.5.1 for description; location and date fixed effects are included
as 100 bins.
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